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Highlights

• The parallelism feature of evolutionary multi-objective optimization (EMO)
can be used to search for multiple clustering results simultaneously.

• An a posteriori method, EMO-KC, is proposed to identify an appropriate
cluster number.

• A transformation strategy is designed for the construction of bi-objective
optimization problem.
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Abstract

The choice of the number of clusters (k) remains challenging for clustering meth-
ods. Instead of determining k, the implicit parallelism feature of evolutionary
multi-objective optimization (EMO) provides an effective and efficient paradigm
to find the optimal clustering in a posteriori manner. That is, first EMO algo-
rithms are employed to search for a set of non-dominated solutions, representing
different clustering results with different k. Then, a certain validity index is used
to select the optimal clustering result. This study systematically investigates
the use of EMO for multi-clustering (i.e., searching for multiple clustering si-
multaneously). An effective bi-objective model is built wherein the number of
clusters and the sum of squared distances (SSD) between data points and their
cluster centroids are considered as objectives. To ensure the two objectives are
conflicting with each other, a novel transformation strategy is applied to the
SSD. Then, the model is solved by an EMO algorithm. The derived paradigm,
EMO-k-clustering, is examined on three datasets of different properties where
NSGA-II serves as the EMO algorithm. Experimental results show that the
proposed bi-objective model is effective. EMO-k-clustering is able to efficiently
obtain all the clustering results for different k values in its single run.

Keywords: Multi-objective optimization, Evolutionary algorithms, Clustering.

1. Introduction

The era of information and big data enables data mining to become increas-
ingly important in many areas such as internet search, finance, urban informat-
ics, and business informatics. As an approach of knowledge discovery, the overall
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goal of data mining is to extract information from a data set and transform it
into an understandable structure for further use. Its main task is to automat-
ically or semi-automatically extract previously unknown, interesting patterns
in large quantities of data sets. As data sets have grown in size and complex-
ity, data mining methods are often aided by other approaches such as neural
networks, evolutionary algorithms, decision trees, support vector machines and
deep learning [10, 12].

Cluster analysis is one of the most important tasks in data mining, which
has been widely applied in a variety of scientific areas such as pattern recogni-
tion, information retrieval, microbiology analysis, and so forth [16]. In general,
a clustering method aims to partition n data points into k clusters. Unless
providing a correct k value, the method will lead to inappropriate clustering re-
sults. Unfortunately, the choice of k is often application dependent [7]. Without
a prior knowledge of how many clusters are really in the data, it is not easy to
choose an appropriate value of k. Therefore, this study proposes to experiment
with a range of values for k such that an user can flexibly choose a clustering
result based on his/her preference or a certain validity index.

To obtain multiple clustering results, a natural way is to iteratively perform a
standard clustering method, e.g., the k-means, with different k, each iteration for
one clustering result. However, this is obviously deficient, in particular, when the
size of data and/or the number of possible k values is large. Therefore, a novel
clustering paradigm called EMO-k-clustering (EMO-KC for short) is proposed.
The EMO-KC utilizes the implicit parallelism of EMO to synchronously obtain
multiple clustering results in a single algorithm run. Specifically, the number
of clusters k and the sum of squared distances between data points and their
cluster centroids (SSD [8] which measures the compactness of the clustering)
are considered as two objectives to be minimized. Since SSD and k are not
always conflicting between two individuals, a novel transformation for SSD is
proposed in this study which guarantees that the conflicting relationship holds
for any two individuals having different k. The bi-objective model is then solved
by an EMO algorithm (e.g., NSGA-II [4], MOEA/D [37, 33], PICEA [29, 30]).
This results in a set of near-optimal trade-off solutions between SSD and k,
representing different clustering results.

As an instance, in this study we use NSGA-II in EMO-KC. The proposed
method is examined on three datasets with different properties, and is shown as
effective. Given the ingenuity of the bi-objective model, EMO-KC1 effectively
finds all clustering results for all considered k values with only one execution of
the algorithm. By further considering a clustering validity index, an appropri-
ate clustering result is identified. In addition, experimental results show that
EMO-KC achieves comparable clustering accuracy with a genetic algorithm-
based clustering method, but significantly outperforms the latter in terms of
computation time when multiple k values are required. Also, EMO-KC is shown
to scale up well on high-dimensional datasets. Overall the main contributions

1For brevity EMO-KC refers to the use of NSGA-II hereafter.
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of this study are i) the proposal of multi-clustering via EMO by which a pre-
ferred (an optimal) clustering result can be selected, and ii) a novel bi-objective
formulation for EMO based multi-clustering.

The rest of this study is structured as follows. In Section 2, clustering
methods and evolutionary multi-objective optimization are briefly explained.
In Section 3, the proposed EMO-KC is elaborated. This is followed by an
examination of the performance of EMO-KC in Section 4 and Section 5. Section
6 concludes this study and identifies some future studies.

2. Background

2.1. Clustering methods
A clustering method partitions a set of n data points, {x1,x2, . . . ,xn} into

k homogeneous clusters such that data points within a cluster are close to each
other and far from those in different clusters. For example, the k-means starts
with k initial cluster centroids, {m1,m1, . . . ,mk}. An input xi is assigned into
the jth cluster if the indicator function I(j|xi) = 1 holds with

I(j|xi)

{
1, if j = arg min1≤r≤k ||xi −mr||2
0, otherwise

(1)

That is, each data point is assigned to its closest centroid. All data points that
are assigned to a specific cluster centroid constitute a cluster. The candidate
cluster centroids are then updated, e.g., taking the mean of all data points
assigned to the jth centroid as the new centroid. The above process repeats till
a stopping criterion is met, e.g., all cluster centroids converge.

2.2. Determination of an optimal k
Since determining k a priori is difficult, a natural question arises: what

the optimal k should be in order to obtain well defined clusters. In literature,
there have been numerous studies proposed to deal with this issue [16, 7]. One
class of the methods is known as automatic data clustering. That is, first,
one or multiple clustering criteria are designed for evaluation of the clustering
results. Second, an algorithm is performed to optimize the criteria wherein k is
considered as a decision variable. For example, in [8] evolutionary algorithms
are applied to optimize the clustering criteria for simultaneously determining the
cluster number as well as clustering the data objects. Another class of methods
can be referred to as posteriori methods. That is, multiple clustering results
for different k are first obtained, then a certain cluster validity index is applied
to evaluate the clustering results. The one that gives the best index value is
selected.

Posteriori methods are our concern in this study. To the best of our knowl-
edge, most of posteriori methods focus on the design of validity index or the
use of various validity indices to perform clustering. With respect to obtain-
ing multiple clustering results under different k, existing studies often employ
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the naive idea, that is, performing a clustering method iteratively with a range
of k values. We are aware of only few studies [15, 18], exploring the idea of
multi-clustering via evolutionary multi-objective optimization. In [15, 18], the
total-within-cluster-variation (TWCV) and k are directly used as objective func-
tions (which will be shown as ineffective later in this study). The bi-objective
model is then solved by an EMO algorithm, NPGA [9]. In addition, the cluster
label-based encoding is employed [15, 18], i.e., the length of a chromosome is
equal to the number of points in the dataset, and each position denotes the
cluster label of the respective point. The main advantage of this type of encod-
ing is that the decoding step is straightforward, and it looks suitable for any
data types. However, there are also disadvantages, e.g., the chromosome length
is the same as the number of points. This may create difficulty for algorithm
convergence.

2.3. Evolutionary Multi-objective optimization
Evolutionary multi-objective optimization is to solve multi-objective prob-

lems (MOPs) by evolutionary algorithms. MOPs refer to problems that have
multiple objective functions to be simultaneously optimized, see Eq. (2).

Min F (x) = {f1(x), f2(x), · · · , fm(x)}
such that x = (x1, x2, . . . , xi, . . . , xn) ∈ Ω

(2)

where Ω denotes the search space, m is the number of objectives, x is the
decision vector consisting of n decision variables xi. A solution x is said to
Pareto dominate another solution y, if and only if, ∀i = 1, 2, ...,m, fi(x) ≤ fi(y)
∧∃j = 1, 2, ...,m, fj(x) < fj(y). Furthermore, a Pareto optimal solution is the
one that is not Pareto dominated by any other solutions. The image of all
Pareto optimal solutions in the objective space is termed the Pareto optimal
front.

Since objective functions in MOPs are often in conflict with one another, the
optimal solution of MOPs is not a single one but rather a set of non-dominated
solutions [3]. These solutions present different trade-offs between objectives.
The decision-maker can choose a solution based on his/her preference. Evolu-
tionary multi-objective algorithms, e.g., [4, 37, 36] are well-suited for solving
MOPs [23] since their population based nature enables to generate multiple
trade-off solutions in a single algorithm run. These trade-off solutions are ex-
pected to be as close as possible to (convergence), and as evenly (uniformity)
and widely (diversity) distributed along the entire Pareto optimal front as pos-
sible [11, 32]. In the last two decades, a number of EMO algorithms have been
proposed. To name some representatives, Pareto dominance-based algorithms,
e.g., [4], decomposition based algorithms, e.g.,[4], indicator based algorithms,
e.g., [20, 21], preference based algorithms [29, 28]. In addition, EMO algorithms
are often applied to aid decision-making [31, 22].
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3. Evolutionary Multi-clustering Optimization: EMO-k-clustering

This section elaborates how multiple clustering results are obtained via evo-
lutionary multi-objective optimization. The procedure contains mainly two
steps [5, 34]: i) constructing two conflicting objective functions, and ii) solv-
ing the bi-objective optimization problem with an effective EMO algorithm.

3.1. Bi-objective model
The intra-cluster distance is measure of the sum of squared distances (SSD)

between data points and their cluster centroids, see Eq. (3). Minimizing the
sum of squared distances shows homogeneity and tightness of the cluster. The
SSD in general decreases as k increases. To the extreme case, i.e., k is the same
as the number of data points, the SSD reaches zero. Thus, the two conflicting
objective functions are constructed based on the two measures. Specifically,
they are defined as follows.

Min F (x) = {f1(x) = (1− exp−1·SSD)− k, f2(x) = k}

where SSD =
k∑

r=1

∑

xi∈Cr

||xi −mr||2

mr = (m1
r,m

2
r, . . . ,m

d
r)

(3)

where mr = (m1
r,m

2
r, . . . ,m

d
r) denotes the rth cluster centroid, d is the dimen-

sionality of a data object, i.e., the number of features describing a data object.
Cr denotes the collection of data points in the rth cluster. Other validity in-
dices are also applicable, e.g., the total-within-cluster-variation (TWCV [16]).
However, since Eq. (3) requires the index value SSD ≥ 0, the employed validity
index should be slightly modified by subtracting the minima of the index values.

The reason that f1 is not directly set as SSD, i.e., f1(x) 6= SSD is as follows.
The monotonic decreasing property of SSD (as k increases) holds only if the
true cluster centroids are found [8]. Before approaching to the optimal case
(true cluster centroids), the conflicting relationship between SSD and k is not
guaranteed, see Figure 1 for an illustration.

Therefore, if the bi-objective model is built with {f1(x) = SSD, f2(x) = k},
it would be very likely that solutions for some k values are dominated during
the search. In the worst case, no solution will be found for those k values at
the end. It is easy to know that this observation also applies to other cluster
validity indices such as the TWCV metric used in [15, 18]. A similar illustration
is provided in Appendix A.

According to the above analysis, in Eq. (3) a transformation is applied to
the SSD. By the transformation 1− exp−1·SSD−k, f1 and f2 are guaranteed to
be conflicting for any two solutions having different k values.

Proof. Assuming that s1 and s2 are two randomly selected solutions, and their
assigned k values are k1 and k2, respectively. Without loss of generality, we

6
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Figure 1: SSD values with true and rand cluster centroids over different k.

assume k1 > k2. Thus,

f2(s1)− f2(s2) = k1 − k2 ≥ 1

Meanwhile, f1(s1)− f1(s2) =

(1− exp−1·SSD(s1,k1)−k1)− (1− exp−1·SSD(s2,k2)−k2)

=(k2 − k1)− (exp−1·SSD(s2,k2)− exp−1·SSD(s1,k1))
(4)

Since exp−1·SSD is always within (0, 1), so f1(s1) − f1(s2) < 0. This ends the
proof.

Next we prove that every Pareto optimal solution of Eq. (3) corresponds to
an optimal solution of Minf(x, k) = SSD, i.e., the optimal clustering result for
a certain k.

Proof. Assuming that (obj1, obj2) is a solution on the Pareto optimal front (and
its associated decision vector is x′. Therefore, when f2 = obj2 (a certain cluster
number), there is no solution that can produce a smaller f1 than obj1, thus
obj1 is minimum, i.e., f1(x′) is minimum. Since the second part of f1(x′) is a
constant, so 1 − exp−1·SSD is minimum for the case k = obj2 and the optimal
solution of Minf(x, k) = SSD is x′.

This ends the proof.

3.2. Optimizer
With respect to the optimizer, the EMO algorithm– NSGA-II [4] is chosen

due to its simpleness and robust performance on two-objective problems, though
other EMO algorithms can also be used. Specifically, the NSGA-II is slightly
tailored to solve the constructed two-objective problem. Its pseudo-code is
shown in Algorithm 1.

The derived algorithm employs an (µ + µ) elitist framework as shown in
Figure 2. It starts with a set of N randomly generated parent solutions. At
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Figure 2: Illustration of the (µ+ µ) elitist framework in NSGA-II.

Algorithm 1: The tailored NSGA-II for multi-clustering.
Input: Maximum generation maxGen, population size N , a range of k

values
Output: PS

1 Initialize a set of N random solutions, PS;
2 Assign each solution with a random different value of k;
3 while gen ≤ maxGen do
4 Generate N offspring solutions OS by crossover and mutation

operators;
5 Combine PS and OS together to form jointS;
6 Evaluate jointS by the fast non-dominated sorting approach and the

crowding distance [4];
7 Select the best N solutions from jointS to form the new parent PS;
8 gen← gen+ 1;
9 end

8
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each iteration, the same number of offspring are produced through selection,
crossover and mutation operators (e.g., simulated binary crossover (SBX) and
polynomial mutation (PM) [4]). Then parent solutions and their offspring are
combined to form a joint population. Solutions in the joint population are
then ranked by the fast non-dominated sorting approach (based on the Pareto
dominance relation). Amongst equally ranked solutions, the secondary criterion,
crowding distance, is employed to select solutions in less crowded regions so as
to enhance the diversity of solutions. Subsequently, N solutions are selected
from the joint population as the new parents. Next we elaborate the solution
encoding, crossover and mutation operators used in this algorithm. All the other
components adopted in the algorithm are the same as the original NSGA-II.

3.2.1. Solution encoding
With respect to the solution encoding strategy, the centroid-based encoding

is adopted [16]. The individual (chromosome) is composed of real numbers that
represent the coordinates of the cluster centroids. Moreover, in order to handle
different number of clusters, a unified chromosome is applied. That is, all chro-
mosomes are initialized with the length of d ·kmax where d is the dimensionality
of data points and kmax is the maximum k value. The default range of k is
[1, kmax]. After the initialization, each chromosome is assigned with a random
k. Therefore, during the search, only the first d · k genes are taken as decision
variables for a chromosome. The range of each gene (the cluster centroid) is
bounded by the lower bound and upper bound of the datasets. For example,
assuming that we have a chromosome s1=(0.5,0.3,0.4,0.1,0.7,0.8,0.2,0.6) and
kmax = 4, d = 2. Therefore, when k = 2 is assigned to s1, only (0.5,0.3,0.4,0.1)
will be taken as decision variables.

3.2.2. Crossover and mutation
For two randomly selected individuals, s1 and s2, the SBX and PM opera-

tors are applied to produce new offspring. The SBX operator is a two-parent
variation operator that produces two new solutions. It has two controllable
parameters: i) the probability of applying recombination pc to a pair of parent
solutions, and ii) the magnitude of the expected variation from the parent values,
(ηc). The PM operator also has two controllable parameters: i) the probability
of applying mutation (pm), and ii) a mutation distribution parameter (ηm). s′1
and s′2 inherent k values of s1 and s2, respectively. Note that the crossover is
carried out across all solutions, rather than being restricted only within solu-
tions having the same k. This is because performing crossover between solutions
with different k values may facilitate knowledge transfer which can increase the
exploration ability further [6]. The effect is discussed in Section 5.2.

Lastly, it is worth mentioning that multi-populations based evolutionary
algorithms (MPEAs [25, 24]) can also be applied to obtain multiple clustering
results simultaneously. MPEAs evolve multiple populations during the search,
each population for a single k setting. However, MFEAs may not be suitable
when k is large [13]. Nevertheless, EMO-KC can be benefited from the MPEA
framework since MPEAs are inherently suitable for parallel computing. That is,
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the efficiency of EMO-KC could be improved even further based on the parallel
mode of MPEAs.

4. Experiments

4.1. Test datasets and algorithm parameters
Experimental datasets are three simulated artificial datasets which are gen-

erated using normal distribution with different values of parameters– mean (µ)
and standard deviation (δ), as shown in Table 1. The first dataset, denoted
as DS_100_4 is relatively simple which contains 100 objects, and forms four
clear clusters with equal size. The second dataset, denoted as DS_500_6,
contains 500 objects, and forms six clusters with different sizes. The third
dataset, denoted as DS_900_7, contains 900 objects, and forms seven clusters.
Some outliers are added to increase the difficulty of clustering task. The lower
and upper bounds of data objects are [0,0] and [1,1], respectively. Here, only
two-dimensional datasets are shown since their clustering results can be easily
visualized. Multi-dimensional datasets will be studied in Section 5.

Table 1: Features of artificial datasets (where nO = number of objects, nC = number of
clusters, µ= mean, δ = standard deviation).

DS_100_4
nO = 100
nC = 4

µ1 = [0.2, 0.2], µ2 = [0.2, 0.6]
µ3 = [0.6, 0.2], µ4 = [0.6, 0.6]

δ = [0.001, 0; 0, 0.002]

DS_500_6
nO = 500
nC = 6

µ1 = [0.2, 0.2], µ2 = [0.2, 0.6]
µ3 = [0.6, 0.2], µ4 = [0.6, 0.6]
µ5 = [0.4, 0.4], µ6 = [0.4, 0.8]

δ = [0.001, 0; 0, 0.002]

DS_900_7
nO = 900
nC = 6

µ1 = [0.1, 0.2], µ2 = [0.4, 0.2]
µ3 = [0.8, 0.2], µ4 = [0.2, 0.5]
µ5 = [0.7, 0.6], µ6 = [0.1, 0.8]

µ7 = [0.6, 0.9]

δ = [0.003, 0; 0, 0.005]

Parameters of EMO-KC are shown in Table 2. These settings are kept
constant for all algorithm runs.

Table 2: General parameter settings
maxGen N SBX PM

250 90 pc = 1, ηc = 15 pm = 1/n, ηm = 20

10
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4.2. Experimental results
4.2.1. The performance of EMO-KC

Though a wider range of k values can be considered, here k is set within the
interval [3,20] for illustration. The non-dominated solutions2 for each k ∈ [3, 20]
(in the objective space) obtained by the EMO-KC are shown in Figure 3.

3 4 5 6 7 8 9 1011121314151617181920
f2: The number of clusters, k

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

f1

Figure 3: Pareto fronts ofDS_900_7 obtained by EMO-KC. Results for the other two datasets
are similar, and thus, are not shown here.

From Figure 3, it can be observed clearly that 18 non-dominated solutions,
representing clustering results for all considered k values, are obtained for the
DS_900_7 datasets. Next we show how the best clustering result (the optimal
k) is selected by the “elbow” method [7]. In the method, SSD against k is plotted.
The “elbow point” where the rate of decrease sharply shifts is considered as the
optimal k. Since there could be more than one elbow, or no elbow at all for
some datasets, the Davies-Bouldin (DB) index [16] which is defined as the ratio
of the sum of the within cluster dispersions to the between cluster separation is
further considered to determine the best clustering result (corresponding to the
optimal k). The smaller the DB index the better the clustering result.

The “elbow plot” as well as the DB index for the three datasets are shown
in Figure 4. From the figure we can clearly observe that there are elbow points
for the three datasets, which are k = 4, 6, 7, respectively. Moreover, according
to the DB index, one can also find that k = 4, 6, 7 provide the best clustering
results for the three datasets, respectively.

Having determined the optimal k, we then evaluate how well the datasets
are clustered. The number of wrongly clustered data points is counted, and is
used as a metric. It is found that for all the three datasets none of data points
is wrongly clustered, which indicates that EMO-KC is effective.

Essentially, as the EMO-KC adopts the centroid-based encoding, it may en-
counter similar issues as the k-means. For example, EMO-KC can handle sphere-
shaped clusters well, but may not capture clusters with non-convex and/or in-

2Statistically, the solution set with the median hypervolume [38] value across 31 algorithm
runs is shown. Hypervolume (HV) is a widely used performance indicator to evaluate the
performance of EMO algorithms. A larger HV implies both good convergence and diversity
[38].
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(a) DS_100_4, k∗ = 4
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(b) DS_500_6, k∗ = 6
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(c) DS_900_7, k∗ = 7

Figure 4: Elbow plot and the DB index over k for the three datasets.

consistent shapes. Nevertheless, this issue can be circumvented by employing
other encodings in EMO-KC. Overall, the main superiority of EMO-KC com-
pared to k-means is the elimination of determining k a priori. Besides, EMO-KC
provides multiple clustering results against different k, which might be useful
for a decision-maker who can select a suitable clustering result based on his/her
preference. Lastly, as EMO-KC uses evolutionary algorithms as search engine,
it is not easy to get trapped into local optima as the k-means.

4.2.2. Comparison of EMO-KC and GA-KC
This section demonstrates the superiority of EMO-KC over a genetic algorithm-

based k-clustering (denoted as GA-KC). To enable a fair comparison, the two
methods take the same population size, the number of generations, crossover
and mutation operators, see Table 2. The only difference is that GA-KC is a
single-objective optimizer wherein only the first objective in Eq. (3) is opti-
mized. Moreover, when initializing individuals in GA-KC, the number of k is
assumed to known. This means that the length of an individual in GA-KC is
smaller than the EMO-KC.
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Figure 5: Averaged run time of EMO-KC and GA-KC on DS_900_7 for 250 generations.
Both methods are implemented on a workstation with an Intel Core i7-4600U CPU at 2.10
GHz and 8 GB RAM running the Windows 7 operating system.

Figure 5 shows the run time of EMO-KC and GA-KC on DS_900_7 for
different values of k from 3 to 20. Since EMO-KC obtains all results in a
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single run, its run time is theoretically constant which is 2.5271(s) despite the
stochastic feature of operation systems. The GA-KC has to run 18 times so
as to obtain all results. Thus, its overall run time is accumulated which is
42.3504(s). To be statistical, the running time are averaged across 31 runs for
both methods.

It is observed that from Figure 5 that EMO-KC consumes less time than
GA-KC if more than two k values are considered. Therefore, if the number of
clusters can be determined a priori, GA-KC is recommended. However, if one
has to make more guesses about k, then EMO-KC is more efficient.

Moreover, the accuracy of the clustering results (in terms of the number of
wrongly clustered data objects) by the two methods is also examined. Both
the methods can correctly identify the optimal k. Also, all data points are
appropriately clustered.

4.2.3. Comparison of EMO-KC with/without the transformation
To investigate the effect of the transformation strategy– ensuring the con-

flicting relationship between objective functions, a comparative study, i.e., the
bi-objective model with and without the transformation, is conducted. The
EMO-KC with the same parameter settings is applied to the three datasets.
The obtained Pareto front for the dataset DS_900_7 is shown in Figure 6 for
an instance.
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Figure 6: Pareto fronts of DS_900_7 obtained by EMO-KC without the transformation

From Figure 6 we can clearly observe that without the transformation, no
solution is found for some k settings, e.g., k = 8, 12, 19, 20. This clearly demon-
strates that our proposed transformation is effective. Although only the results
for DS_900_7 are shown, similar results are observed for other datasets.

4.2.4. Comparison of EMO-KC with MOKGA
In this section we further demonstrate the advantages of EMO-KC by com-

paring it against an earlier work, MOKGA [15, 18] on the well-known dataset,
Iris. The Iris dataset contains 150 instances that are from three classes (setosa,
versicolour, virginica). There are 50 instances in each class. Each instance is
described with four features, sepal length, sepal width, petal length, petal width.
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To make a fair comparison study, in both EMO-KC and MOKGA, the
centroid-based clustering, the same SBX and PM variation operator are adopted.
Also, both methods take the same population size and maximum number of
generation. Specifically, in EMO-KC the objectives are minimization of the
transformed TWCV and the number of clusters while in MOKGA the objec-
tives are minimization of TWCV metric and the number of clusters. Definition
of TWCV is shown in Appendix A. Comparison results are show in Figure 7.
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Figure 7: Comparison results between EMO-KC and MOKGA.

From the results we can observe that both the methods can find the optimal
number of clusters, i.e., k=3. However, the difference is that EMO-KC is able to
return all the specified clustering results while MOKGA cannot. The MOKGA
returns no result for k=7 and 8. It is argued that although for the IRIS data
MOKGA has found the optimal clustering however, it may face difficulty for
other datasets since it cannot find all the required clustering results, i.e., re-
sults for all the specified k values. Moreover, the clustering accuracy is also
calculated, 7.5 instances (averaged 30 algorithm runs) are wrongly classified in
EMO-KC while 8.2 instances (averaged 30 algorithm runs) are wrongly classi-
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fied in MOKGA. Therefore, we can draw a conclusion that EMO-KC is more
robust than MOKGA.

5. Discussion

5.1. Scalability of EMO-KC on high-dimensional datasets
This section examines the scalability of EMO-KC on high-dimensional datasets.

Five datasets with two, three, five, seven and nine dimensions are considered
respectively. Again, k is assumed to be in the interval [3, 20]. Elbow plots for
all datasets are shown in Figure 8.
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Figure 8: Elbow plots of dataset DS_100_4 with different dimensions.

From the results we can tentatively conclude that EMO-KC scales up well
on high-dimensional datasets. Since the number of decision variables in EMO-
KC increases with the dimensionality of the data point, clustering problems
become large-scale optimization [35] when the number of attributes is hundreds
or thousands. One can employ cooperative co-evolution strategies to further
improve the performance of EMO-k-means on high dimension datasets [17, 19].

5.2. Cooperation between k and its neighbours
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Figure 9: Illustration of Pareto fronts obtained by EMO-KC and EMO-KC2 for DS_100_4.

Empirical results have demonstrated both the effectiveness and efficiency of
EMO-KC. We think that the advantage of EMO-KC is because of the implicit
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cooperation amongst neighbouring solutions. That is, the crossover operation
is performed within the entire population rather than only within solutions
associated with the same k. To verify this hypothesis, EMO-KC is compared
with EMO-KC2 in which crossover is allowed only for solutions associated with
the same k. Comparison results (the obtained Pareto front) for DS_100_4
are shown in Figure 9 from which we can clearly see that almost all solutions
obtained by EMO-KC2 are Pareto dominated by those obtained by EMO-KC.
Thus, EMO-KC clearly outperforms EMO-KC2. Note that similar results are
observed for other datasets.
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Figure 10: Cluster centroids over different k. Although only results for DS_100_4 with
k ∈ [3, 6] are shown, similar observations are obtained for the other two datasets.

Given a further thought, the obtained non-dominated solutions for different
k are very likely to share common features. Some cluster centroids in a non-
dominated solution with k clusters may be similar to those in a non-dominated
solution with k + 1 or k − 1 clusters. Taking the dataset DS_100_4 as a test
instance, Figure 10 shows the obtained cluster centroids (?) for k = 3, 4, 5, 6. As
is expected, some centroids are almost the same for different k. This also indi-
cates that performing crossover within the entire population (amongst different
k values) is helpful.

6. Conclusion

Determining an appropriate k a priori for data clustering is a long-standing
question. This study, without pre-determining k, proposed to harness the im-
plicit parallelism of EMO for multi-clustering. That is, first searching for cluster-
ing results for a range of different k values, then selecting the optimal clustering
based on a certain clustering validity index. In contrast to existing studies that
different clustering results are obtained iteratively, the proposed EMO based
clustering method obtains all clustering results in its single run. As an im-
plementation of the idea, the NSGA-II based EMO-k-clustering is tested on
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three datasets of different properties, and is demonstrated as both effective and
efficient. Moreover, in EMO-KC a simple yet effective objective transforma-
tion strategy is developed, which is demonstrated as helpful in enhancing the
algorithm performance.

With respect to future studies, the first is to examine EMO-KC on more
complicated, and real datasets. Second, instead of taking SSD as the basis
of objective function, other validity indices can be applied. Moreover, it is
known that validity indices could be sensitive to structures of datasets, a hybrid
validity indices could be considered. Third, the transformation strategy is shown
as important for multi-clustering, though it seems to have been overlooked in
literature. Thus, more effective transformation strategies would be investigated.
Fourth, effective EMO algorithms [1, 2, 14, 27, 20, 21] can be developed to
aid the large scale optimization arise in data clustering. Lastly, it is worth
mentioning that multi-clustering effectively is an instance of multi-cardinality
constrained optimization [26] (or evolutionary multitasking [6]). The proposed
method therefore provides new insights for such problems.

Overall, the parallelism of evolutionary multi-objective optimization has
shown promising for searching for multiple clustering results simultaneously.
However, this concept is still in its infancy, more rigorous studies are needed in
the future. Source code of EMO-k-clustering is available at http://ruiwangnudt.
gotoip3.com/optimization.html.

Appendix A. The TWCV value over different k

It has been shown in Figure 1 that SSD does not monotonically decrease as
k increases. Since many studies also employ the total-within-cluster-variation
(TWCV) as cluster validity index [16], the necessity of applying the transforma-
tion strategy to TWCV is demonstrated in this section. Similarly, the TWCV
value with true and rand cluster centroids over different k is presented in Figure
A.11. The TWCV index is defined as follows.

TWCV =
n∑

i=1

d∑

j=1

x2ij −
K∑

k=1

1

nk

d∑

j=1

( ∑

xi∈Ck

xij

)2

(A.1)

where xij denotes the jthe feature value of the ith data point, and nk denotes
the number of points in cluster Ck.

It can be clearly observed that the monotonic decreasing property does not
hold for TWCV when the true centroids are not found. Thus, it is recommended
to apply the transformation strategy when TWCV is taken as an objective in
[15, 18].
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